
Strong correlations in a nutshell

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys.: Condens. Matter 19 433201

(http://iopscience.iop.org/0953-8984/19/43/433201)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 06:19

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/19/43
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 19 (2007) 433201 (35pp) doi:10.1088/0953-8984/19/43/433201

TOPICAL REVIEW

Strong correlations in a nutshell

Michel Ferrero1, Lorenzo De Leo1,2, Philippe Lecheminant3 and
Michele Fabrizio4,5
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Abstract
We present the phase diagram of clusters made of two, three and four coupled
Anderson impurities. All three clusters share qualitatively similar phase
diagrams that include Kondo screened and unscreened regimes separated by
almost critical crossover regions reflecting the proximity to barely avoided
critical points. This suggests the emergence of universal paradigms that apply
to clusters of arbitrary size. We discuss how these crossover regions of the
impurity models might affect the approach to the Mott transition within a cluster
extension of dynamical mean field theory.

(Some figures in this article are in colour only in the electronic version)
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Acronyms and main notation

W Non-interacting electron bandwidth
U Hubbard on-site repulsion
T ∗

F Quasi-particle effective Fermi temperature
� Impurity hybridization width
TK Kondo temperature
ρ(ε) Impurity density of states
�(iω) Impurity self-energy in Matsubara frequencies
MIT Mott metal-to-insulator transition
DMFT Dynamical mean field theory
NRG Wilson’s numerical renormalization group
CFT Conformal field theory
DOS Single-particle density of states

1. Introduction

The Mott metal-to-insulator transition [1, 2] emerges out of the competition between the
opposite tendencies of the electrons to delocalize throughout the lattice in order to maximize
the band energy gain and their mutual Coulomb repulsion which, on the contrary, tends to
suppress valence fluctuations by localizing the carriers. If the band energy gain, which can
be identified with the ‘bare’ bandwidth W , is small enough with respect to the short range
Coulomb repulsion, commonly parametrized by an on-site Hubbard U , and the average electron
density per site is integer, charge gets localized and the system is a Mott insulator; otherwise it
remains metallic.

Despite its intuitive nature, the Mott phenomenon is extremely difficult to study because
it is inherently non-perturbative and because it escapes any simple single-particle description.
Those can only deal with band insulators, characterized by an energy gap separating totally
filled from unfilled bands. The simplest example of a Mott insulator is provided by the single-
band Hubbard model at half-filling, which always has an insulating phase at sufficiently large
repulsion. Yet, in order to make this phase appear for instance in Hartree–Fock theory, one is
obliged to assume an antiferromagnetic order parameter that doubles the unit cell so as to fulfill
the necessary requirement for a band insulator—an even number of electrons per unit cell. With
this trick, the Mott transition is effectively turned into a metal to band insulator transition driven
by magnetism. In reality, local moments form and eventually order as a consequence of charge
localization by the Mott phenomenon. This distinction might look pedantic since the ground
state is anyway both insulating and magnetic, but in fact it is not, as we are going to argue by
the qualitative behavior of the entropy in the Mott insulator and in the contiguous metal.

In figure 1, we sketch the typical temperature dependence of the entropy deep inside a
Mott insulating phase, U � W . At high temperature, T � U , valence fluctuations are
suppressed and the local charge gets locked to some fixed value n0. Yet, all local electronic
configurations with n0 electrons are thermally occupied with equal probability, leading to a
constant entropy regime that could be identified as the ideal Mott insulator, where charge
degrees of freedom are frozen while all other degrees of freedom, in particular spin, are
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Figure 1. Qualitative behavior of the entropy in a Mott insulator.
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Figure 2. Qualitative behavior of the entropy of a strongly correlated metal.

completely free. However, at some lower temperature, other energy scales come into play
whose role is to lock these additional degrees of freedom, namely to favor one or several
among all the local electronic configurations with n0 electrons. These energy scales may
include for instance the on-site Coulomb exchange, responsible for the Hund’s rules, the inter-
site direct exchange or superexchange, the crystal field, the coupling to the lattice, etc. We
will collectively denote these energy scales by J , which may be identified as the temperature
below which the entropy of the residual degrees of freedom of the ideal Mott insulator starts
to be suppressed. Consequently, at low temperature, a realistic insulating phase is established,
which is commonly accompanied by a symmetry breaking phase transition at T = Tc � J ,
for instance a magnetic ordering, a collective Jahn–Teller distortion, etc. Below Tc, the entropy
decreases to zero as T → 0, generically faster than linearly. For instance, in the half-filled
single-band Hubbard model, the ideal Mott insulator corresponds to a regime in which each site
is singly occupied but its spin can be with equal probability either up or down, leading to an
entropy ln 2 per site. However, below a temperature of the order of the inter-site spin exchange,
the ln 2 entropy decreases until the system crosses a magnetic phase transition, below which its
entropy vanishes according to the dimensionality of the system and to the dispersion relation
of the spin waves.

Recently, an amount of research activity has focused on the possibility that different
symmetry broken phases may compete in the insulator, leading to exotic low temperature
phenomena [3]. Here, we will completely discard this event and concentrate on a different
competition which emerges in the metallic phase adjacent the Mott insulator.

In figure 2, we draw how the entropy versus temperature might look like for a strongly
correlated Fermi liquid-like metal, assuming that no symmetry breaking intervenes down to
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zero temperature. As before, we expect that the charge entropy is, this time only partially,
reduced at some high temperature of order U � W . The rest of it, as well as the entropy
of the other degrees of freedom, are instead suppressed by the formation of the degenerate
quasi-particle gas. This occurs below a temperature T ∗

F , that can be identified as the effective
quasi-particle Fermi temperature. Since quasi-particles carry the same quantum numbers as
the electrons, the entropy quenching involves all degrees of freedom at once, including the
charge. Below T ∗

F the entropy vanishes linearly, S(T ) � γ∗ T , with a specific heat coefficient
γ∗ usually larger than its non-interacting value γ ∼ 1/W .

Let us suppose that the Mott transition (MIT) were continuous and try to guess how that
might happen from the point of view of the entropy. Obviously, since quasi-particles disappear
in the Mott insulator, T ∗

F has to vanish at the MIT. Therefore, sufficiently close to the MIT,
the quasi-particle Fermi temperature T ∗

F must become smaller than J . When this happens
we should expect, by continuity with the insulating side, that part of the spin entropy gets
suppressed already at temperatures of order J , above the onset of Fermi degeneracy. This
amounts to some kind of pseudo-gap opening above T ∗

F , which is at odds with the conventional
Landau–Fermi liquid theory. One way out, apart from a first-order MIT, is that something new
occurs when T ∗

F � J . Indeed, the presence of J provides the metallic phase with an alternative
mechanism to freeze spin degrees of freedom independently of the charge ones, a mechanism
that becomes competitive with the onset of a degenerate quasi-particle gas when T ∗

F � J .
This competition is likely to lead to an instability of the Landau–Fermi liquid towards a low
temperature symmetry broken phase (this happens in the insulating side), but may also signal a
real breakdown of Fermi liquid theory.

Notice that, unlike the competition between different symmetry broken Mott insulating
phases, which requires a fine tuning of the Hamiltonian parameters that may only accidentally
occur in real materials, this other type of competition—whose effects have not been discussed
in the literature before to the extent we believe they deserve—should be encountered whenever
it is possible to move gradually from a Mott insulator into a metallic phase, for instance by
doping or by pressure. We also know several examples where this competition is argued
to be at the origin of interesting phenomena. For instance, in heavy fermion materials the
Kondo effect, favoring the formation of a coherent band of heavy quasi-particles, competes
with the RKKY (Ruderman–Kittel–Kasuya–Yosida) interaction (for a comprehensive review
see e.g. [4]). Here this competition is supposedly the key to understand the anomalies which
appear at the transition between the heavy fermion paramagnet and the magnetically ordered
phase [5–7].

1.1. Competing screening mechanisms in Anderson impurity models

The heavy fermion example is a particularly pertinent one to introduce the subject of this
review. Indeed, the competition between Kondo effect and RKKY coupling has interesting
consequences not only in the periodic Anderson model but already at the level of Anderson
impurity models.

For instance, the phase diagram of two spin-1/2 impurities coupled to a conduction bath
and mutually by a direct antiferromagnetic exchange has two limiting regimes: one where each
impurity is independently Kondo screened by the conduction electrons; and another where
the exchange locks the impurity spins into a singlet state, now transparent to the conduction
electrons. Under particular circumstances—the two involved scattering channels must be
independently coupled each to one impurity—these two regimes are separated by a quantum
critical point, at which non-Fermi liquid behavior emerges [8–12].

The phase diagram grows richer when one consider three antiferromagnetically coupled
spin-1/2 impurities [13, 14]. Here, besides a Kondo screened regime, there are other phases
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where the direct exchange prevails, but is unable to fully quench all impurity degrees of
freedom. This leads to stable non-Fermi liquid phases analogous to overscreened multi-channel
Kondo models [15, 16]. These impurity cluster models are interesting not only as simple
attempts towards an understanding of the fully periodic Anderson model, but also because
compact cluster of impurities are achievable experimentally by adsorbing atoms on metallic
surfaces. Trimers of Cr atoms have already been realized on gold surfaces [17], which has
actually motivated the most recent theoretical activity on impurity trimers [18–20, 14]. In
this context, the major task is to identify those phases which are stable towards perturbations
generically present on metallic surfaces. Therefore the quantum critical points that separate
stable phases are of minor interest from an experimental point of view, as they require such a
fine tuning that is extremely unlikely to occur in physical systems.

1.2. Impurity models and dynamical mean field theory

Unstable critical points arise when the competition between Kondo screening and RKKY
coupling is maximum. This is nothing but the impurity counterpart of the situation in which
T ∗

F � J we previously met in connection with the Mott transition. This weak analogy turns
into an actual equivalence within the so-called dynamical mean field theory (DMFT) [21], the
quantum analogue of classical mean field theory which, like the latter, is exact for infinite
coordination lattices. In this limit, the single-particle self-energy becomes fully local but
maintains a non-trivial time dependence, obtained within DMFT by solving an auxiliary single-
impurity Anderson model that is designed so as to have an impurity self-energy that coincides
with the local self-energy of the lattice model. This requirement translates into an impurity
model identified by the same local interaction as the lattice model and by a coupling to a
conduction bath that must be self-consistently determined. The single-site formulation of
DMFT has provided a lot of useful information about the Mott transition per se, disentangled
from magnetism or whatever symmetry breaking occurs in the insulating state. However,
even though single-site DMFT can account in a Hartree–Fock manner for simple magnetic
phases on bipartite lattice, it is inadequate to study our anticipated competition. For instance,
it misses precursor effects in the paramagnetic phase close to the magnetic phase transition,
caused by inter-site processes which disappear in infinite coordination lattices. For this
reason, several extensions of DMFT have been recently proposed to include short range spatial
correlations [22–26]. In these novel versions, the lattice model is mapped onto a cluster of
Anderson impurities, subject to self-consistency conditions.

The physics of the Anderson impurity model turned out to be a precious guideline to
interpret single-site DMFT results [21]. Similarly, we expect that the preliminary knowledge
of the general properties of impurity clusters is useful, perhaps even necessary, in connection
with any cluster extension of DMFT. However, apart from few exceptions [8, 13], little is
known about impurity clusters. In addition, since models of impurity clusters involve many
intra-impurity and inter-impurity energy scales, it is not a priori evident that there should be a
common interpreting framework like the Kondo physics in the single-impurity case.

This is actually the purpose of this review. Specifically, we are going to present the phase
diagram of the simplest among impurity clusters, namely dimers, trimers and tetramers, that
could be used to implement a cluster DMFT calculation on strongly correlated models. Besides
our main objective to identify the common features among different clusters, which should
presumably play the most significant role in a DMFT approach, we will also try to argue
how much of the impurity cluster physics might survive the DMFT self-consistency, hence
the possible consequences on the phase diagram of the lattice models. Needless to say, the
interest in impurity clusters goes beyond its possible relevance to strongly correlated models
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Figure 3. Behavior versus U and doping δ of the quasiparticle Fermi temperature, T ∗
F , which

translates within DMFT into the Kondo temperature TK of the effective impurity model. J is an
effective intra-cluster energy scale.

near a Mott transition. As we previously mentioned, these clusters may be experimentally
realized on metallic surfaces or, eventually, by arranging quantum dots in proper geometries.
Moreover, these models represent a theoretical challenge by themselves, which requires the
full machinery of Wilson’s numerical renormalization group (NRG) [27–29] and conformal
field theory (CFT) [30] for a detailed comprehension.

Before entering into the details of our calculations, it is worth briefly presenting the
physical idea that guided this work. First of all, let us recall some basic facts of the single-
site DMFT mapping onto impurity models. Within this mapping, the quasi-particle effective
Fermi temperature, T ∗

F , translates into the Kondo temperature, TK, of the impurity model. The
self-consistency condition causes TK to vanish at a finite value of U , which signals, in the
lattice counterpart, the onset of the Mott transition. This also implies that the metallic phase
just prior to the Mott transition translates into an Anderson impurity model deep inside the
Kondo regime, with a very narrow Kondo resonance and pre-formed Hubbard side-bands [21].
The same behavior should occur even when dealing with a cluster of impurities, which should
therefore translate into a cluster of Kondo impurities. The novelty stems from the other energy
scales which we collectively denoted as J , and that take care of quenching in the Mott insulator
the degrees of freedom other than the charge. Indeed, near the Mott transition, J translates into
additional processes, like for instance a direct exchange between the impurity spins, which tend
to remove, completely or partially, the degeneracy of the cluster. Consequently, J competes
with the Kondo effect, an agent that takes more advantage the more degenerate the impurity
cluster ground state.

We notice that this competition is always active in impurity clusters, while it is commonly
absent in single-impurity models except in multi-orbital cases [31, 32] whose physics is in
fact close to clusters. We believe that this additional ingredient is precisely the common
denominator of all impurity cluster models, which endows them with the capability of providing
a more faithful description of a realistic Mott transition within DMFT.

Indeed, in the presence of the intra-cluster coupling J , the approach to the Mott transition
changes as qualitatively shown in figure 3, with a Kondo temperature smoothly decreasing
from its initial value W as U/W increases and becoming of order J just before the transition.
Analogously, see also figure 3, starting from the Mott insulator and doping it, TK will smoothly
increase from its value TK = 0 at zero doping, until it will again cross a value of order J .
In other words, any impurity cluster should experience, within DMFT, two different regimes.
The first, when TK � J , in which full Kondo screening takes place and the impurity density
of states displays the usual Kondo resonance. In the lattice model, this regime translates into
a conventional correlated metal. The second, when TK � J , particularly close to the Mott
transition, in which no or only partial Kondo screening occurs. Here the impurity density
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of states is pseudo-gapped at the chemical potential. As we will show, these two regimes
of the impurity cluster are generically separated by an almost critical crossover region that
reflects the proximity to a true quantum critical point. How do the unscreened phase and the
almost critical crossover region of the impurity cluster translate in the lattice model? The
answer to this question would be simple if a true impurity critical point existed, as discussed
in [33, 34]. Indeed, near a critical point, the impurity model displays strongly enhanced local
susceptibilities, equivalently enhanced local irreducible four-leg vertices, in several instability
channels. Within DMFT, the irreducible four-leg vertices, which enter the Bethe–Salpeter
equations, coincide with the local ones [21]. Therefore, it is reasonable to argue that, after
full DMFT self-consistency is carried out, these local instabilities may turn into symmetry
breaking bulk instabilities that correspond to the same instability channels of the impurity
critical point. However, establishing which one of these symmetry breakings really occurs
requires full DMFT calculations, as it depends on other details, like for instance the nesting of
the Fermi surface. These speculations have been tested with success by a DMFT analysis of a
two-orbital Hubbard model [32]. Although these criticalities are, rigorously speaking, avoided
in impurity cluster models pertinent to DMFT, still we believe that these models approach a
critical point so closely that the physics does not change qualitatively.

In the following, we will describe in succession the case of dimer, trimer and tetramer
clusters, and, in spite of their obvious differences, we will identify the universal aspects of the
competition discussed above.

2. The impurity dimer

The simplest impurity cluster that is relevant to DMFT is a dimer described by the Hamiltonian

H =
2∑

a=1

∑

kσ

εk c†
a kσ ca kσ +

∑

kσ

t⊥ k

(
c†

1 kσ c2 kσ + H.c.
)

−
2∑

a=1

∑

kσ

(
Vk c†

a kσ da σ + H.c.
)

− t⊥
∑

σ

(
d†

1 σ d2 σ + H.c.
)

+ U

2

2∑

a=1

(na − 1)2, (1)

where c†
a kσ creates a conduction electron in channel a = 1, 2 with momentum k, energy εk,

measured with respect to the chemical potential, and spin σ , while d†
a σ is the creation operator

at the impurity site a = 1, 2 with spin σ , na = ∑
σ d†

a σ da σ being the occupation number.
This model describes two Anderson impurities, each hybridized with its own conduction bath
and in turn coupled to the other impurity by a single-particle hopping t⊥. Since within cluster
DMFT the self-consistent baths must mimic the effects of the rest of the lattice on the two sites
of the dimer, also the two baths are coupled by a hybridization t⊥ k. The role of the inter-bath
hybridization is to generate a frequency-dependent contribution to the inter-impurity hopping
that, together with t⊥, produce off-diagonal elements a 	= b to the impurity Green function

Gab(τ ) = −〈Tτ (da σ (τ ) d†
b σ )〉.

In fact, any coupling among the baths transfers into a coupling among the impurities and vice
versa, apart from the frequency dependence that can be anyway neglected in the asymptotic
low frequency regime. For this reason, in what follows we will indifferently refer to inter-bath
or to inter-site depending upon the context.

Close to the Mott transition the effective impurity model resides well inside the Kondo
regime, where U � Vk, t⊥. Here, the model can be mapped via a Schrieffer–Wolff
transformation onto two spin-1/2 impurities that, up to order 1/U , are coupled to the two
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Figure 4. Phase diagram of the dimer model (3) as function of U/� at fixed J/U � 1.

conduction baths by a Kondo exchange

JK = 8

U

∑

k

|Vk|2 δ (εk) (2)

and together by an antiferromagnetic J = 4t2
⊥/U . This means that the spectral distribution of

the inter-impurity hybridization
∑

σ

〈(d†
1 σ d2 σ + H.c.)〉 = −4

∫ 0

−∞
dω

π
ImG12(ω),

is transferred to high energy, and what remains at low energy is mainly the exchange J . Within
the DMFT self-consistency scheme, we should then expect that also the direct hybridization
among the baths, t⊥ k, behaves similarly, which suggests that one could start the analysis with
the large U limit of the Hamiltonian

H =
2∑

a=1

[
∑

kσ

εk c†
a kσ ca kσ −

(
Vk c†

a kσ da σ + H.c.
)]

+ U

2

2∑

a=1

(na − 1)2 + J S1 · S2

≡
2∑

a=1

HK
a + J S1 · S2, (3)

where Sa is the spin density operator of impurity a = 1, 2, plus a weak inter-bath hybridization
to be considered as a perturbation. This does not at all imply that the latter is irrelevant. Rather,
as we are going to discuss, this hybridization turns out to be a relevant perturbation. It only
means that this perturbation becomes influential at energy scales much smaller than those at
which the main effects caused by the competition between J and JK start to appear, as we shall
discuss later. For the time being, let us consider the Hamiltonian (3). This model was originally
studied with NRG by Jones and Varma [8–10]. They found that the phase diagram includes two
stable phases. When the Kondo temperature, TK, is much larger than J , each impurity is Kondo
screened by its conduction bath. On the contrary, when J � TK, the two impurities lock into a
singlet and no Kondo screening is required anymore. These two stable phases were found to be
separated by a critical point with non-Fermi liquid properties [10]. We notice that, since TK is
a decreasing function of U , the phase diagram at fixed J/U � 1 as a function of U/�, where
� = �(0) is the hybridization width defined through

�(ε) = π
∑

k

V 2
k δ (ε − εk) , (4)

also includes a critical point at some (U/�)∗, see figure 4. More specifically, since the Kondo
temperature in units of half the conduction bandwidth behaves, at J = 0 and for large U , as [4]

TK ∼
√

8�

πU
e−πU/8�, (5)
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one expects the critical point to occur approximately around

U

�
∼ 8

π
ln

1

J
. (6)

In other words, perturbation theory breaks down at a finite value of the interaction within
model (3), which is per se an interesting situation uncommon in interacting Fermi systems.

The detailed properties of the critical point were later unraveled in [11, 12] by means
of conformal field theory (CFT). The use of CFT to study impurity models relies on the fact
that only a finite number of conduction electron scattering channels are hybridized with the
impurity. This implies that, when �(ε), equation (4), is smooth around the chemical potential,
ε = 0, on a scale larger than the Kondo temperature, the asymptotic low temperature/frequency
behavior is similar to a conventional one-dimensional semi-infinite chain of non-interacting
electrons, the impurity sitting at the edge. It is known that non-interacting electrons in one
dimension can be mapped through bosonization [35] onto a 1 + 1 critical field theory—the
criticality corresponding to the fermionic spectrum being gapless—that is not only scale but
also conformal invariant. This allows to fully identify and classify all critical properties:
thermodynamic quantities, correlation functions and finite size energy spectra [36–38, 30]. In
impurity models, the effective one-dimensional chain turns out to be semi-infinite, implying
that one has actually to deal with a boundary CFT [39]. Since a single impurity cannot induce
any gap in the bulk spectrum, the conformal invariance of the free electrons remains intact; the
only effect of the impurity is to change the boundary conditions (BCs) among the conformally
invariant ones. A crucial step to determine the allowed BCs is the so-called conformal
embedding [30], which amounts to identifying the conformal field theories corresponding to the
symmetry groups under which the Hamiltonian of the conduction electrons plus the impurity
stays invariant. Note that the number of gapless degrees of freedom must be conserved, which
corresponds, within CFT, to the fact that the CFTs in the absence and presence of the impurity
have the same total central charge [30]. A conformal embedding can be justified rigorously
by identifying the partition function of free electrons with that obtained by combining the
partition functions of the CFTs that emerge out of the embedding. Some simple applications
of this very powerful method are given in the appendix. In the most favorable cases, the proper
BCs correspond to conformally invariant BCs only within one of the different CFTs of the
embedding. The next useful information is that the conformally invariant BCs within each
sector can be obtained by the so-called fusion hypothesis [39, 40], according to which, starting
from the spectrum of a known BC, one can obtain all the others upon fusion with the proper
scaling fields, called primary fields, of the CFT, see the appendix. Fusion is just the technical
word to denote the process in which the impurity with its quantum numbers dissolves into the
conduction electron Fermi sea.

Let us consider for instance model (3), and assume, for simplicity, that the two baths are
particle–hole invariant. As a consequence, the baths, in the absence of the impurities, can be
described by a CFT [40] which includes independent spin SU(2)1 and charge isospin SU(2)1

for each bath, see appendix, namely an overall
(

SU(2)
(1)
1 × SU(2)

(2)
1

)

charge
×

(
SU(2)

(1)
1 × SU(2)

(2)
1

)

spin
.

The subscript in SU(2)
(a)

k can be regarded here as the number of copies of spin-1/2 or isospin-
1/2 electrons participating to the SU(2) algebra [35], while the superscript refers to the bath.
Since the charge isospin generators commute with the Hamiltonian even when the coupling to
the impurities is switched on, the charge sector can still be represented by two independent
isospin SU(2)1 CFTs. On the other hand, only the total spin SU(2) transformations leave the
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Hamiltonian invariant, which translates into an SU(2)2 (two copies of electrons) CFT. As a
result the proper embedding in the spin sector is [11], see also the appendix,

(
SU(2)

(1)

1 × SU(2)
(2)

1

)

spin
→ SU(2)2 × Z2,

where Z2 denotes an Ising CFT which reflects the symmetry under permutation of the two
baths. The Ising CFT has three primary fields, the identity I , with dimension 0, ε (the thermal
operator), with dimension 1/2, and σ (the Ising order parameter), with dimension 1/16. Each
state and operator can then be identified by the quantum numbers (I1, I2, S, Ising) where I1

and I2 refer to the charge isospin of each channel, S to the total spin and Ising to the Z2 sector.
Affleck and Ludwig [11, 12] realized that the different fixed points found by NRG, see

figure 4, correspond to the three different BCs of the Ising CFT, namely two fixed BCs,
the stable phases—where one Ising spin orientation is prohibited at the boundary—and one
free BC, the unstable fixed point—where both orientations are allowed. Starting from the
unscreened phase, the Kondo screened phase is obtained by fusion with the Ising primary field
ε, while the unstable critical point is obtained by fusion with the Ising order parameter σ .
Furthermore, the critical point is identified by a finite residual entropy S(T = 0) = 1

2 ln 2,
showing that part of the impurity degrees of freedom remains unscreened.

CFT also determines, by the so-called double fusion [40], the dimensions of the relevant
operators, see the appendix. It turns out that there are three equally relevant (i.e. with dimension
less than 1) symmetry breaking perturbations which can destabilize the unstable fixed point,
identified by two asterisks in table A.4 of the appendix. They all have the same dimension 1/2
as the invariant operator, single asterisk in table A.4 of the appendix, which moves away from
the fixed point and corresponds to a deviation of J from its fixed point value J∗ at fixed TK, or,
vice versa, a deviation of TK at fixed J . The first symmetry breaking operator is an opposite
spin magnetization for the two baths, namely a local operator of the form

hAF (S1 − S2), (7)

and corresponds in table A.4 of the appendix to the operator with quantum numbers
(I1, I2, S, Ising) = (0, 0, 1, 0). The second is a BCS term in the inter-bath Cooper singlet
channel:

hSC

(
d†

1↑d†
2↓ + d†

2↑d†
1↓

)
+ H.c.. (8)

The last perturbation is a direct hybridization between the two baths,
∑

σ

h⊥ d†
1σ d2σ + H.c., (9)

which breaks the O(2) channel symmetry. Both (8) and (9) correspond in table A.4
of the appendix to the spin singlet operator with quantum numbers (I1, I2, S, Ising) =
(1/2, 1/2, 0, 0). On the contrary, both a chemical potential shift that moves away from particle
hole symmetry, or a perturbation that splits the two conduction channels, do not destabilize
the critical point. Indeed, if the position of the impurity levels is modified, so that the average
number of electrons on each impurity moves away from 〈na〉 = 1, a = 1, 2, the critical point
is still encountered, although it will shift to larger U/� at fixed J/U � 1 [34], see figure 5.

2.1. Dynamical behavior of the impurity dimer

The instability channel (9) is very important since, as we mentioned, the inter-bath as well as the
inter-impurity hybridization are always present. Therefore the relevant issue becomes whether
this hybridization completely washes out the critical behavior of the underneath critical point,
or whether a critical region still remains. In order to answer this question, it is convenient
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Figure 5. Phase diagram of (3) as function of U/� and δ = |〈n〉 − 1|, 〈n〉 being the average
occupancy of each impurity, at fixed J/U � 1.

to analyze the impurity spectral function, which is also the key ingredient of the DMFT self-
consistency procedure.

We start by noticing that, in spite of the fact that both Kondo screened and unscreened
phases of the Hamiltonian (3) are Fermi liquid-like in Nozières’ sense [41] (namely they
correspond asymptotically to well defined limits of free electron scattering off a structureless
impurity potential, infinite in the Kondo screened phase and zero in the unscreened one), the
dynamical properties of the impurities are completely different. Indeed, the conduction electron
scattering S-matrix at the chemical potential should satisfy

S = 1 − 2
ρ(0)

ρ0
, (10)

where ρ(0) is the actual density of states (DOS) of the impurity at the chemical potential,
while ρ0 = 1/(π�) is its non-interacting U = J = 0 value. Since both stable phases are
Fermi liquid-like, it follows that the S matrix is unitary, hence can be written as S = e2iδ,
where δ is the phase shift at the chemical potential. The Kondo screened phase is identified
by a phase shift δ = π/2, that implies S = −1 hence ρ(0) = ρ0; the DOS at the chemical
potential is unaffected by the interaction. On the contrary, in the unscreened phase δ = 0,
thus S = 1 and ρ(0) = 0. In other words, while in the Kondo screened phase the DOS is
peaked at the chemical potential—the conventional Kondo resonance behavior—it vanishes in
the unscreened one. Furthermore, according to CFT, right at the critical point S = 0, namely
ρ(0) = ρ0/2. These results are actually reproduced by NRG, see e.g. [34]. In figure 6, we
draw our NRG results for the impurity DOS of the dimer model (3) for U = 8, J = 0.001 25,
in units of half the conduction bandwidth, and for various values of � across the critical point
�∗, which lies between 0.42 and 0.44. The upper inset shows that, on large scales, the DOSs in
the screened and unscreened phases are practically indistinguishable. The differences emerge
at very low energies. Apart from the value of the DOS at the chemical potential, which, as
mentioned, can be anticipated by general scattering theory arguments, other useful information
can be extracted from the whole low energy behavior. As was realized in [34], the DOS is
controlled by two energy scales. In the Kondo screened phase, there is a narrow Kondo peak
on top of a broad resonance. The Kondo peak shrinks as the critical point is approached, while
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Figure 6. Main panel: low energy behavior of the impurity DOS of the dimer model (3) with
U = 8, J = 0.001 25 and, from top to bottom, � = 0.44, 0.42, 0.4, 0.35, 0.3, in units of
half the conduction bandwidth. We observe that the rough estimate of the order of magnitude of
the critical U/� ∼ −(8/π) ln J � 17.3, see equation (6), agrees with the actual numerical value
(U/�)∗ ∼ 18.2. Upper inset: the DOS behavior in the whole energy range with the same U and
J and with � = 0.6, top curve, and � = 0.3. The Hubbard bands are clearly visible, while the
low energy parts are hardly distinguishable. The discretization parameter [28, 29] that we used is
� = 2.

the width of the large resonance remains practically constant. Indeed, right at the critical point,
only the latter survives. On the contrary, inside the unscreened phase, the Kondo peak turns into
a narrow pseudo-gap within the broad resonance, leading to a low energy DOS ρ(ε) ∼ ε2. This
behavior has been found to be well reproduced by the following model DOS at low energy [34]:

ρ±(ε) = ρ0

2

(
T 2+

ε2 + T 2+
± T 2−

ε2 + T 2−

)
, (11)

where the + sign refers to the screened phase and the − one to the unscreened. T+ is the width
of the broad resonance, T− the one of the narrow peak in the screened phase and the amplitude
of the pseudo-gap in the unscreened regime. As the critical point is approached on both sides,
T− ∼ |�−�∗|2 → 0 [34], in accordance with the CFT prediction that the relevant operator has
dimension 1/2. Away from particle–hole symmetry, 〈na〉 	= 1, the two stable phases are still
identified by a relative π/2 shift of δ, although the unscreened phase value, δ0, is different from
zero. In this case, the following model DOS was found to reproduce well the NRG data [34]:

ρ±(ε) = ρ0

2

[
T 2+ + μ2±

(ε + μ±)2 + T 2+
± cos 2δ0

T 2−
ε2 + T 2−

]
, (12)

with μ± = ±T+ sin 2δ0. This formula shows that, in the unscreened phase, the pseudo-gap
remains pinned at the chemical potential, even if, since the broad resonance shifts, the pseudo-
gap fills in of an amount proportional to the ‘doping’, i.e. |〈na〉 − 1|.

By the model DOS (11), one can extract a model self-energy, �(iω) in Matsubara
frequencies, which, for low ω > 0, behaves as

�+(iω) � −iω

(
� (T+ + T−)

2T+T−
− 1

)
+ iω2 �(T+ − T−)2

4T 2+T 2−
, (13)
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Figure 7. Imaginary part of �(iω) versus ω for U = 8 and J = 0.001 25: (a) whole frequency
range behavior for � = 0.5, 0.48, 0.44, 0.35, 0.3, from top to bottom; (b) low frequency behavior
for the Kondo screened values � = 0.5, 0.48, 0.44; (c) and (d) low frequency behavior for the
unscreened values � = 0.35, 0.3. These results were obtained with � = 2.

in the Kondo screened phase, as

�−(iω) � −i
1

ω

2�T+T−
T+ − T−

− i�
T+ + 3T−
T+ − T−

− iω
2� − T+ + T−

T+ − T−
, (14)

in the unscreened one, and finally as

�∗(iω) � −i� − iω
2� − T+

T+
, (15)

exactly at the critical point, T− = 0, or in the range T− � ω � T+. The model self-
energy reproduces well the actual NRG results, shown in figure 7. Only in the screened
phase, panels (a) and (b) in figure 7, the self-energy has the standard perturbative behavior,
�(iω) ∼ (1 − 1/Z) iω, with Z the quasiparticle residue, which breaks down at the critical
point, where �(iω) goes to a constant value for ω → 0, and even more in the unscreened
regime where, as shown on different frequency ranges in panels (a), (c) and (d) of figure 7,
�(iω) diverges as ω → 0.

Let us now consider the original dimer model (1). In order not to deal with too many
Hamiltonian parameters, we consider the case in which the inter-bath hybridization is zero,
t⊥ k = 0, and take U = 8, as before, and t⊥ = 0.05, such that J = 4t2

⊥/U = 0.001 25, the
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Figure 8. Main panel: low energy behavior of the impurity DOS of the model (1) with U = 8,
t⊥ = 0.05 and, from top to bottom, � = 0.5, 0.47, 0.45, 0.4, 0.3, in units of half the conduction
bandwidth. Upper inset: the DOS behavior in the whole energy range with the same U and J and
with � = 0.5, top curve, and � = 0.2. These results were obtained with � = 2.

same value used previously. In this model t⊥ has a double role: on one side it generates a spin
exchange able to drive the model across the critical point, but at the same time it also breaks the
relevant O(2) channel symmetry thus making the critical point inaccessible. Indeed, as shown
by the behavior of the impurity DOS in figure 8, a crossover now joins the Kondo screened
phase and the unscreened one. There are still quite distinct DOSs deep inside the screened and
unscreened phases, the former characterized by a Kondo resonance, the latter by a pseudo-gap.
However, the transition from the two limiting behaviors is now just a crossover, although quite
sharp.

More interesting are the changes that intervene in the impurity self-energy with respect
to the model (3). In presence of t⊥, the self-energy, besides diagonal elements, �11(iω) =
�22(iω), which are imaginary, also acquires off-diagonal components, �12(iω) = �21(iω)∗,
which turn out to be purely real. In figure 9, we plot Im �11(iω) and Re �12(iω) versus ω

for the same values of �’s as in figure 8, on two different energy ranges. We notice that
the gross features of �11(iω) remain intact, namely, as the model moves from the screened
regime towards the unscreened one, the diagonal self-energy increases quite fast in absolute
value. However, a linearly vanishing ‘Fermi liquid’ behavior is eventually recovered at very
low energies, as shown in the left bottom panel of figure 9. In fact, the model in the presence
of t⊥ does not need to develop a singular self-energy anymore to open up a pseudo-gap at the
chemical potential as in model (3). It is the off-diagonal self-energy, �12, that accomplishes the
job in this case. Indeed, as shown in the right panels of figure 9, �12 becomes so large at low
energy to open up an appreciable hybridization gap, not explainable by the tiny value of t⊥ as
compared to the hybridization width �. This result could be justified simply by stating that the
strong repulsion U enhances the effective strength of t⊥. However, the previous results on the
dimer model (3) and the strong energy dependence of the self-energy, see figure 9, suggest that
this anomalous behavior reflects rather the properties of the avoided critical point which exists
in the presence of J at t⊥ = 0. In other words, we believe that our results testify that a sizable
critical region still exits and largely explains the physical behavior.
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Figure 9. y-axis: imaginary part of �11(iω), left panels, and real part of �12(iω), right panels,
versus ω (x-axis) for U = 8, t⊥ = 0.05 and, from top to bottom, � = 0.5, 0.47, 0.45, 0.4, 0.3 and
� = 2. In the top figures the whole frequency range is showed, while in the bottom ones only the
very low frequency behavior.

Obviously, as in any other case of avoided criticality, the width of the critical region
depends on the actual value of t⊥ with respect to the other parameters U and �. Since both t⊥
and � are self-consistently determined within DMFT as function of U and the bare bandwidth,
we cannot establish with certainty what might happen in a DMFT simulation of a Hubbard
model using a dimer as a representative cluster. However, because the exchange J derives
from high energy processes and survives even inside the Mott insulator, while the coherent
hopping dies out at the Mott transition, we believe that a sizable critical region should exist
in the effective impurity cluster model and plays an influential role in determining the bulk
properties after the DMFT self-consistency.

3. The impurity trimer

An important lesson of the impurity dimer was that, in order to identify in all details the
properties of the critical region, it is more convenient to study a model in which the impurities
are coupled together by an antiferromagnetic exchange rather than by a hopping as would be
the case in reality. In the end, we will discover that, just like in the dimer example, the hopping
is a relevant perturbation, and yet a critical region survives. Therefore, let us consider the next
simple cluster, which is the impurity trimer drawn in figure 10 with the Hamiltonian
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Figure 10. The impurity trimer with the Hamiltonian (16).

H =
3∑

a=1

HK
a + J (S1 + S3) · S2 + J ′ S1 · S3, (16)

where HK
a has been defined in (3). This model describes three spin-1/2 impurities, coupled

together by antiferromagnetic J and J ′ and each of them hybridized to a conduction bath.
As before, we assume that the baths are degenerate and particle–hole invariant. This model,
although simplified by the absence of any inter-impurity hopping, is much more complicated
than the dimer model (3). Therefore, in order to unravel its phase diagram, we need to combine
the NRG analysis, which provides the low energy spectra of the various fixed points, with CFT,
which allows to identify each fixed point with a particular boundary CFT, whose properties can
be determined exactly. For this reason, we cannot start our analysis before introducing some
CFT preliminaries.

3.1. CFT preliminaries for the trimer

As in the dimer example, also in the trimer model (16) at particle–hole symmetry the charge
degrees of freedom can be described by three independent isospin SU(2)

(a)
1 CFTs, a = 1, 2, 3.

For the spin degrees of freedom, the expression of the inter-impurity exchange suggests
naturally that we must first couple the spin sectors of baths 1 and 3 into an overall SU(2)2

via the embedding

SU(2)
(1)
1 × SU(2)

(3)
1 → SU(2)

(1−3)
2 × Z2, (17)

and finally couple the SU(2)2 to the bath 2 into an SU(2)3, according to

SU(2)
(1−3)
2 × SU(2)

(2)
1 → SU(2)3 × (TIM) , (18)

where TIM stands for the tricritical Ising model CFT with central charge c = 7/10. It
describes for instance the tricritical point of the two-dimensional Blume–Capel model which
involves an Ising spin variable and a vacancy variable indicating if the site is empty or
occupied [42, 43]. The above conformal embedding can be rigorously justified by the character
decomposition [30], although we do not give here the details of this lengthy and involved
construction.
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Figure 11. Phase diagram of the trimer model (16). All different phases are discussed in the text,
and their properties briefly summarized in table 1.

The primary fields of an SU(2)k as well as of the Ising CFTs, together with their fusion,
i.e. multiplicative, rules, are discussed in the appendix. For what concerns the TIM, it contains
six primary fields, the identity I , with dimension 0, the thermal energy operator ε, with
dimension 1/10, the energy density of annealed vacancies t , with dimension 3/5, ε ′′, with
dimension 3/2, the magnetization σ , with dimension 3/80, and the subleading magnetization
operator σ ′, with dimension 7/16 [30]. Their fusion rules can be found for instance in [30, p
224].

As we previously mentioned, the possible conformally invariant boundary conditions can
be classified by means of the fusion hypothesis [15, 16, 12]. Namely, starting from the spectrum
of a simple BC, one can obtain the spectra of other allowed BCs upon fusion with primary fields
of the CFTs. By comparing the low energy spectra determined in this way with those obtained
by NRG, one can identify and characterize all fixed points of the model.

3.2. Fixed points in the trimer phase diagram

In figure 11, we draw the phase diagram of the trimer as obtained by NRG [27–29]. In order to
have a classification scheme which works equally well for Fermi liquid and non-Fermi liquid
phases, the fixed points are identified through the zero-frequency values of the scattering S-
matrices of the baths, (S1, S2, S3), which can be obtained by CFT [44, 45] through the modular
S-matrix [30]. Note that, through equation (10), the values of the scattering S-matrices give
direct access to the values of the DOS at the chemical potential of each impurity. We just recall
that Sa = −1 means that the impurity a DOS has a Kondo resonance, Sa = 1 that it has a
pseudo-gap, ρa(ε) ∼ ε2, while any intermediate value implies a non-Fermi liquid behavior.
The physical properties of the different phases are furthermore summarized in table 1.

Let us now present briefly the features of each fixed point.

3.2.1. (S1, S2, S3) = (−1,−1,−1). This fixed point, that describes a conventional perfectly
Kondo screened phase, will be used as the ancestor BC which, upon fusion with primary fields,
will provide all other BCs. It is quite obvious that this phase exists and extends in a whole
region around the origin J = J ′ = 0 in figure 11. Indeed, when J = J ′ = 0, each impurity
is independently Kondo screened by its own conduction bath and this perfect screening cannot
be affected by finite J and J ′ much smaller than the Kondo temperature. It is far less obvious
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Table 1. Summary of the main physical properties of the different phases in figure 11, including the
behavior of the zero-frequency DOSs for the three impurities, ρi (0) with i = 1, 2, 3, with respect to
the non-interacting value ρ0, and the dimension of the relevant symmetry breaking single-particle
operators. ‘NOT’ means that the operator is not relevant, i.e. has dimension not smaller than 1. φ is
the golden ratio.

(0, 1, 0) φ−2 (−1, 1,−1) (−1,−1,−1) (0,−1, 0) (1,−1, 1)

ρ1(0)/ρ0 = ρ3(0)/ρ0 1/2
(
1 + φ−2

)
/2 1 1/2 0

ρ2(0)/ρ0 0
(
1 − φ−2

)
/2 1 1 1

S1 + S3 − 2S2 1/2 2/5 NOT NOT NOT

S1 − S3 NOT NOT NOT 1/2 NOT

d†
1 d3

a 1/2 3/5 NOT 1/2 NOT

d†
1 d†

3
a 1/2 3/5 NOT 1/2 NOT

(
d†

1 + d†
3

)
d2

a NOTb 3/5 NOT NOTb NOT
(

d†
1 + d†

3

)
d†

2
a NOTb 3/5 NOT NOTb NOT

a These particle–hole and particle–particle operators are spin singlets.
b These operators are not relevant in the sense that their dimension is not smaller than 1. However,
they do generate in perturbation theory one of the truly relevant perturbations, with dimension
smaller than 1, so that in reality they are relevant too.

that this fixed point remains stable for large J � J ′. When J ′ = J � TK, the impurities lock
into two degenerate S = 1/2 configurations. In the first, sites 1 and 3 are coupled into a triplet
which in turn is coupled with site 2 into an overall spin-1/2 configuration. Since this is even
by interchanging 1 with 3, we denote it as |e〉. The other configuration, which we denote as |o〉
as it is odd under 1 ↔ 3, corresponds to sites 1 and 3 coupled into a singlet, leaving behind the
free spin-1/2 moment of site 2. The Kondo exchange projected onto this subspace reads

JK

3
|e〉〈e| S · (2J1(0) − J2(0) + 2J3(0)) + JK |o〉〈o| S · J2(0)

− JK√
3

(|e〉〈o| + |o〉〈e|) S · (J1(0) − J3(0)), (19)

where S describes the effective S = 1/2 of the trimer, while Ja(0) is the spin density of bath
a = 1, 2, 3 at the impurity site, assumed to be the origin. All the above screening channels flow
to strong coupling within a simple one-loop calculation. Since it can be readily shown that the
impurity can be perfectly screened, both in the spin and in the even–odd channels, one has to
conclude that the whole line J = J ′ at finite JK corresponds to the Kondo screened fixed point
(−1,−1,−1), as in figure 11. A small deviation from J = J ′ is an irrelevant perturbation that
splits the degeneracy between |e〉 and |o〉. Only a finite deviation eventually destabilizes this
fixed point, the faster the smaller JK.

3.2.2. (S1, S2, S3) = (0, 1, 0). This fixed point occurs for J � TK, J ′, see figure 11. The
NRG spectrum is compatible with that obtained by fusing the (−1,−1,−1) fixed point with
the field σ ′ of the TIM. It is not difficult to realize that this fixed point is equivalent to the non-
Fermi liquid phase of the S = 1/2 two-channel Kondo model [15, 16]. Indeed if J ′ = 0 and J
is large, the trimer locks into the S = 1/2 configuration which we previously denoted as |e〉, to
indicate the even parity upon 1 ↔ 3. The Kondo exchange projected onto this configuration is,
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see equation (19),

S ·
3∑

a=1

J (a)
K Ja(0) = JK

3
S · (2J1(0) − J2(0) + 2J3(0)). (20)

Hence, while baths 1 and 3 are still antiferromagnetically coupled, the coupling with bath
2 turns effectively ferromagnetic. The ordinary one-loop renormalization group calculation
would predict that the Kondo exchanges J (1)

K = J (3)
K > 0 flow towards strong coupling, while

J (2)
K < 0 flows towards zero. This suggests that a model with J (1)

K = J (3)
K � −J (2)

K > 0 should
behave asymptotically as (20). If J (2)

K = 0 this is just the two-channel spin-1/2 impurity
model [15, 16], which is non-Fermi liquid with S-matrices S1 = S3 = 0 [44, 45]. It is easy
to show that the small ferromagnetic J (2)

K transforms into an antiferromagnetic exchange of
the form J2(0) · (J1(0) + J3(0)), which is irrelevant. Consequently, we expect that this phase
should remain non-Fermi liquid and identified by the S-matrices (S1, S2, S3) = (0, 1, 0), as
indeed confirmed by CFT. In addition, through the modular S-matrix, one can show that the
zero-temperature entropy S(0) = 1/2 ln 2 is finite and coincides with that of the S = 1/2
two-channel Kondo model. Since σ ′ × σ ′ = I + ε ′′, with the latter having dimension 3/2 > 1,
this fixed point is stable to symmetry preserving perturbations. Yet, there are several symmetry
breaking relevant perturbations of dimension 1/2. One of them corresponds to the staggered
magnetization

J1 − 2J2 + J3. (21)

All the other relevant operators break the degeneracy between bath 1 and 3, as for instance the
spin singlet operator

J2 · (J1 − J3), (22)

and the direct hopping or singlet pairing between baths 1 and 3, both known to be relevant
perturbations at the overscreened non-Fermi liquid fixed point [46]. Note that, although the
hopping/pairing operators between baths 1 and 2 as well as 3 and 2 have dimension 1, they
do induce indirectly a symmetry breaking coupling among baths 1 and 3 of dimension 1/2,
hence they are effectively relevant, specifically marginally relevant. This phase with S-matrices
(S1, S2, S3) = (0, 1, 0) extends at finite J ′ just because J ′ does not generate any symmetry
breaking relevant perturbation.

The approach to the fixed point is controlled by two leading irrelevant operators of
dimension 3/2: ε ′′ and the scalar product of the staggered magnetization (21) with the first spin
descendant. Similarly to the overscreened two-channel Kondo model [15, 16], these operators
produce logarithmic singularities in the impurity contribution to the specific heat coefficient
and to the magnetic susceptibility, Cimp/T ∼ χimp ∼ ln(1/T ).

3.2.3. (S1, S2, S3) = φ−2 (−1, 1,−1). Since the Kondo screened phase, (−1,−1,−1) and
the non-Fermi liquid one, (0, 1, 0), are essentially different, it is clear that an unstable critical
line separates the two, see figure 11. We find that the NRG spectrum can be reproduced by
fusing the (−1,−1,−1) fixed point with ε of the TIM. The S-matrices are φ−2 (−1, 1,−1)

and the residual entropy is S(0) = ln φ, where φ = (1 + √
5)/2 is the golden ratio. Since

ε×ε = I+t , the operator which moves away from the critical line has dimension 3/5. The most
relevant symmetry breaking operator is still the staggered magnetization (21), which has now
dimension 2/5. Once more, the approach to this fixed point is controlled by the scalar product
of the staggered magnetization with the first Kac–Moody descendant of the SU(2)3 CFT,
which has dimension 1 + 2/5. Analogously to the multi-channel Kondo [15, 16], this operator
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produces impurity contributions to the specific heat coefficient and magnetic susceptibility that
diverge like T −1/5.

The spin singlet operator (22) is also relevant, although with a larger dimension 3/5. In
addition, there is a new class of dimension-3/5 operators which correspond to coupling into a
spin singlet of two particles, or one hole and one particle, belonging to bath 2 and either bath 1
or 3. Finally, this critical line is stable towards moving away from particle–hole symmetry, as
it was the case in the dimer.

3.2.4. (S1, S2, S3) = (1,−1, 1) and (S1, S2, S3) = (0,−1, 0). These two fixed points occur
when J ′ > J is larger or comparable with the Kondo temperature. They have a very simple
explanation. Indeed, when J = 0, site 2 is only coupled to bath 2 with a Kondo exchange,
leading to a full screening, i.e. S2 = −1. Sites 1 and 3 plus their own baths realize a two-
impurity Kondo model which, as discussed before, has two stable regimes. One is Kondo
screened, S1 = S3 = −1, for J ′ � TK, (S1, S2, S3) = (−1,−1,−1) in figure 11, and the
other unscreened for J ′ � TK, (S1, S2, S3) = (1,−1, 1) in figure 11. These two regimes are
stable towards switching on a small J � J ′. When J = 0, we also know that an unstable fixed
point at J ′ = J ′∗ ∼ TK separates these two stable phases, which is identified by S1 = S3 = 0,
hence the label (0,−1, 0) in figure 11. Since site 2 is tightly bound into a singlet state with
bath 2, a finite but small J � TK will simply generate a ferromagnetic exchange of order
−J 2/TK by virtually exciting the singlet state. The net effect is that the unstable fixed point at
J = 0 is just the end-point of another critical line which, for J � TK, moves to larger values
of J ′. From the CFT viewpoint, the (1,−1, 1) and (0,−1, 0) fixed points can be obtained by
fusing with ε ′′ of the TIM or σI of the Ising CFT, respectively. The properties of the unstable
(0,−1, 0) critical line are the same as those of the dimer critical point. In particular there is a
relevant operator in the singlet Cooper channel that now involves pairing among baths 1 and 3,
as well as an equally relevant operator which corresponds to an opposite magnetization of bath
1 and 3, i.e. J1 − J3.

3.3. Dynamical properties of the trimer

In the J–J ′ parameter space of the trimer model (16), the J ′ = 0 line is actually pertinent
to a Hubbard model on a bipartite lattice and with nearest neighbor hopping simulated
within cluster DMFT. In this case, the phase diagram is qualitatively similar to that of the
dimer model, see figure 5, apart from the fact that the unscreened phase corresponds now
to the (S1, S2, S3) = (0, 1, 0) non-Fermi liquid phase, while the critical line represents the
(S1, S2, S3) = φ−2 (−1, 1,−1) unstable fixed point.

Both the critical line and the non-Fermi liquid phase are unstable to a nearest neighbor
hopping. If, instead of three impurities coupled by J , we consider three impurities coupled by
a hopping, the transition from the Kondo screened phase to the non-Fermi liquid one transforms
into a crossover between Fermi liquid regimes, exactly like in the dimer. In figure 12, we draw
the self-energies in Matsubara frequencies of the three impurities coupled by the spin exchange
J (panels (a) and (b)), as well as of the impurities coupled by a hopping t⊥ along the bonds 1–2
and 2–3 (panels (c) to (f)). The Hamiltonian parameters are U = 8, J = 0.001 25 and t⊥ =
0.05, like in figures 7 and 9, while � = 0.4, 0.44, 0.5. In the absence of t⊥, the self-energies,
which are diagonal and imaginary, behave as Im �aa(iω) ∼ −ω in the Kondo screened phase,
� = 0.5, and tend to a constant at the fixed point, � � 0.44. In the unscreened phase, � = 0.4,
Im �11(iω) = Im �33(iω) → const. while Im �22(iω) ∼ −1/ω, in accordance with the values
of the scattering S-matrices. Similarly to the dimer, when the impurities are instead coupled by
a single-particle hopping, a Fermi liquid behavior Im �aa(iω) ∼ −ω is eventually recovered at
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Figure 12. Non-vanishing self-energies of the trimer. The three curves correspond to � = 0.5
(green, lightest line), 0.44 (red, the intermediate dark line) and 0.4 (black, the darkest line). Panels
(a) Im �11(iω) = Im �33(iω) and (b) Im �22(iω), for the case of three impurities coupled by
the spin exchange J . Panels (c) Im �11(iω) = Im �33(iω), (d) Im �22(iω), (e) Re �12(iω) =
Re �32(iω) and (f) Im �13(iω), for the case of impurities coupled by a single-particle hopping t⊥,
leading to the same value of J as before. We used a discretization parameter � = 3.0.

very low energy, see panels (c) and (d), although the DOS at site 2 may still display a pseudo-
gapped behavior due to the large value of Re �12(iω) = Re �32(iω).

In conclusion, the dynamical behavior with J or in the presence of t⊥ is qualitatively
similar to the two-impurity cluster.

4. The impurity tetramer

Let us move finally to the last type of cluster investigated, the tetramer drawn in figure 13 with
the Hamiltonian

H =
4∑

a=1

HK
a + J (S1 + S3) · (S2 + S4) + J ′ (S1 · S3 + S2 · S4) . (23)

This model now describes four spin-1/2 impurities, coupled together by nearest J , and next
nearest neighbor J ′, antiferromagnetic exchanges. In addition, each spin is Kondo coupled to
a conduction bath by JK > 0. The four baths are once more assumed to be degenerate and
particle–hole invariant. As before, the impurities are for convenience only coupled through a
spin exchange and not by hopping terms, which we will take into account as perturbations.

4.1. CFT preliminaries for the tetramer

Given our choice of the model (23), the charge degrees of freedom can be still represented by
four independent SU(2)1 CFTs, one for each bath. Concerning the spin degrees of freedom, the
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way in which the impurities are exchange coupled naturally leads to the following conformal
embedding scheme
(

SU(2)
(1)

1 × SU(2)
(3)

1

)
×

(
SU(2)

(2)

1 × SU(2)
(4)

1

)

→
(

SU(2)
(1−3)
2 × Z (1)

2

)
×

(
SU(2)

(2−4)
2 × Z (2)

2

)

→ SU(2)4 × Z (1)
2 × Z (2)

2 × [c = 1 (CFT)p′=6] (24)

where c = 1 CFT stands for the Z2 orbifold of a free bosonic CFT (the bosonic field φ and
−φ must be identified) with compactification radius R = √

2p′ and p′ = 6 [30, 47]. The
two step process represented by (24) corresponds to the coupling of the SU(2)1 spin sectors
of the impurities on the diagonals into SU(2)2, followed by the coupling of these two new
sectors into an SU(2)4. The resulting cosets are the two Ising sectors and the c = 1 CFT. The
embedding can again be rigorously proven through the character decomposition, but the proof
is very technical so we prefer not to give any detail. It is also convenient to represent the two
Ising sectors as a single c = 1 free bosonic CFT, now with compactification radius R = √

4,
i.e. p′ = 2.

The Z2 orbifold of a c = 1 CFT with compactification radius R = √
2p′ includes, besides

the identity, the following primary fields [30, p 785]:

(i) p′ − 1 fields, φh , with dimensions h = λ2/4p′, with λ = 1, . . . , p′ − 1;
(ii) a doubly degenerate field, φ

(a)
p′/4, a = 1, 2, with dimension p′/4;

(iii) the twist operators σ (a) and τ (a), a = 1, 2, with dimensions 1/16 and 9/16, respectively;
(iv) the dimension-1 operator θ .

The fusion rules among the primary fields can be found for instance in [30, p 786].
The embedding

SU(2)2 × SU(2)2 → SU(2)4 × [c = 1 (CFT)p′=6], (25)

has already been discussed in [48] in the context of the two-impurity two-channel Kondo model.
We will see in what follows that some of the anomalies found by those authors do also appear
in our model.
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Figure 14. Phase diagram of the impurity tetramer described by the Hamiltonian (23). All phases
are discussed in the text, and their properties summarized in table 2. Since the calculation is
numerically heavy, we had to use a large � = 10, which is sufficient to characterize the low energy
spectra, hence the various phases, but not adequate to provide accurate estimates of the critical points
(for instance, when J = 0, we find (J ′/Tk)∗ � 0.24 instead of the two-impurity value �2 [10]).
However, even though the absolute values of the critical J/TK and J ′/TK are underestimated, we
still believe that the overall shape of the phase diagram should be representative. For this reason,
we have decided to plot the NRG data rescaled in such a way that, when J = 0, the critical point
has the value found in the two-impurity model [10].

Table 2. Summary of the main physical properties of the different phases in figure 14. ρ(0) is
the zero-frequency DOS of any of the four impurities, ρ0 being its non-interacting value. As in
table 1, several single-particle operators are considered, specifying whether they are relevant, in
which case their dimension is indicated, or not. d†

i di+1 and d†
i d†

i+1 denotes hopping and singlet
pairing, respectively, along the sides of the plaquette, i−i + 1 meaning 1−2, 2−3, 3−4 or 4−1.
d†

i di+2 and d†
i d†

i+2 have the same meaning but along the diagonals, i.e. i−i + 2 stands for 1−3
and 2−4. x is a parameter (not to be confused with the coordinate x that is used in the first row
to identify the different phases, according to figure 14) that changes continuously along the critical
lines I and II, reaching at the first-order point along the diagonal J = J ′ the value x = 1 for line I
and x = 2 for line II.

(x2 − y2) Line II Screened Line I (xy)

ρ(0)/ρ0 0 1/2 1 1/2 0

S1 − S2 + S3 − S4 NOT 1/3 + x2/6 NOT NOT NOT

S1 − S3 NOT NOT NOT 1/2 + x2/2 NOT

S2 − S4 NOT NOT NOT 1/2 + x2/2 NOT

d†
i di+1 NOT 5/8 + (1 − 2x)2/24 NOT NOT NOT

d†
i d†

i+1 NOT 5/8 + (1 − 2x)2/24 NOT NOT NOT

d†
i di+2 NOT NOT NOT 1/2 + x2/2 NOT

d†
i d†

i+2 NOT NOT NOT 1/2 + x2/2 NOT

4.2. Fixed points in the tetramer phase diagram

In figure 14, we draw the phase diagram of (23) as obtained by NRG. As before, each fixed
point is identified by the S-matrices (S1, S2, S3, S4)

(n), where the superscript (n) is introduced
to distinguish between different fixed points with the same S-matrices. In table 2 the main
physical properties of the different phases are summarized.
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4.2.1. (S1, S2, S3, S4) = (−1,−1,−1,−1). This fixed point corresponds to a perfectly
Kondo screened phase. It occurs when TK is large compared with both J and J ′. Once again,
we will use the Kondo screened (−1,−1,−1,−1) fixed point as the ancestor BC to generate
all the others through fusion.

4.2.2. (S1, S2, S3, S4) = (1, 1, 1, 1)(1). If J ′ = 0 and J � TK, the tetramer locks into a
non-degenerate singlet state which is obtained by coupling sites 1 and 3 into a triplet, as well as
sites 2 and 4, and coupling the two triplets into an overall singlet. This configuration transforms
like the function x2 − y2 under the C4 point group of the plaquette, hence the label in figure 14.
The singlet decouples from the conduction electrons which do not feel the presence of the
impurities anymore, resulting in a phase shift δ = 0 in every channel. This phase is Fermi
liquid-like and remains stable even in the presence of a finite J ′, provided the lowest excitation
gap from the ground state of the isolated tetramer is much larger than TK. Within CFT, there
are several possible fusions which lead the (−1,−1,−1,−1) fixed point to this new one. One
is for instance the fusion with the primary field θ of the c = 1 CFT with p′ = 6.

4.2.3. (S1, S2, S3, S4) = (1, 1, 1, 1)(2). If J = 0, sites 1 and 3 are decoupled from sites 2
and 4, hence the tetramer reduces to two independent Kondo dimers. If J ′ � TK each pair
of impurities, 1 and 3 or 2 and 4, is strongly bound into a singlet which decouples from the
conduction electrons. This impurity configuration transforms like xy under the C4 point group,
which explains the label in figure 14. This fixed point is obviously stable to a small J being
turned on, hence, in analogy with the dimer, it should be obtainable by the (−1,−1,−1,−1)

fixed point upon fusion with ε
(1)
I ε

(2)
I , where ε

(a)
I , a = 1, 2, are the energy operator of the two

Ising CFTs. This is also the dimension-1 primary field θ of the c = 1 CFT with p′ = 2.
The NRG spectrum agrees with this prediction not only for small J , but for the whole region
J ′ > J with J ′ � TK, see figure 14.

4.2.4. First-order line. If J = J ′ � TK, the tetramer locks into a doubly degenerate
spin singlet, the states with symmetry x2 − y2 and xy previously mentioned. The Kondo
exchange provides a coupling between these two configurations only at second order, namely
via a quartic conduction electron operator, which is therefore irrelevant. Hence the tetramer
decouples asymptotically from the conduction baths, and its degeneracy remains untouched.
This is confirmed by the NRG calculation, which shows the same Fermi liquid spectrum as in
the absence of the impurity cluster apart from each state being doubly degenerate. This phase
is the analogous of a first-order line, hence its name in figure 13, with a relevant operator of
dimension 0 that describes the splitting of the double degeneracy of the tetramer.

4.2.5. (S1, S2, S3, S4) = (0, 0, 0, 0)(1) and (0, 0, 0, 0)(2). The Kondo screened phase at small
J and J ′ is essentially different from the two unscreened phases at large J > J ′ and large
J ′ > J , respectively. Hence there are two critical lines that start from the J ′ = 0 axis as
well as from the J = 0 one, see figure 14, and finally merge with the first-order line at large
J = J ′. This might happen either through a multi-critical point or by a gradual evolution of
each line into a first-order critical point. The latter scenario is actually realized, since, unlike
in the trimer model, the NRG low energy spectra along both critical lines varies continuously,
signaling the existence of marginal perturbations. For the same reason, a precise identification
of these critical lines with appropriate boundary CFTs is not a simple task.

Let us start from the simplest case at J = 0, which corresponds to two independent dimers,
sites 1 plus 3 and sites 2 plus 4. The fixed point which separates the Kondo screened phase
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from the unscreened one is obviously the superposition of the fixed points of each dimer,
discussed previously. It is obtained by the Kondo screened fixed point upon fusion with the
product σ

(1)
I σ

(2)
I of the two Ising CFTs [11], and is identified by zero scattering matrices,

hence (0, 0, 0, 0)(2) in figure 14, as well as by a residual ln 2 entropy. We already showed that
the fixed point of a dimer can be destabilized only by the symmetry breaking operators (7)–
(9), which are not generated by a small J . Therefore, a finite J � J ′ does not spoil the
unstable fixed point (0, 0, 0, 0)(2), but only moves its position to larger J ′, as it generates a
weak ferromagnetic exchange along each dimer. We notice that, upon double fusion,
(
σ

(1)
I σ

(2)
I

)
×

(
σ

(1)
I σ

(2)
I

)
= I + ε

(1)
I + ε

(2)
I + ε

(1)
I ε

(2)
I ≡ I + φ1/2 + θ,

where the last expression on the right-hand side is written in terms of the corresponding fields
of the p′ = 2, c = 1 CFT. In agreement with NRG, the operator content includes the marginal
operator θ , besides the dimension-1/2 relevant operator that moves away from the fixed point.
Since for two independent dimers we do know that there is no such marginal operator at the
unstable fixed point, we must conclude that θ acquires a finite coupling constant only for J 	= 0.
This situation, which is quite exceptional in impurity models, resembles that found in [48] in
the two-impurity two-channel Kondo model. An important discovery of [48] was that this
marginal operator not only influences the spectrum but also the operator content. Specifically,
Georges and Sengupta recognized, by Abelian bosonization of the model, that the fixed point
Hamiltonian in the presence of the marginal operator is similar to an x-ray edge problem in
bosonization language [49]. Therefore any operator which involves creation or annihilation of
the corresponding ‘core–hole’ acquires an additional dimension. It is not difficult to realize
that the same happens in our case. Indeed the dimension-1/2 relevant operator can be mapped
within bosonization [35] into the operator

ε
(1)
I + ε

(2)
I → d† �(0) + �(0)† d, (26)

which represents the creation (annihilation) of a core–electron, d†(d), and the contemporary
annihilation (creation) of a conduction electron at the core–hole site, �(0)

(
�(0)†

)
.

Analogously, the marginal operator transforms like

ε
(1)
I ε

(2)
I → (

1 − d† d
)

�(0)† �(0),

which corresponds to the interaction between the core–hole and the conduction electrons. In
the presence of this term, the dimension of the relevant operator (26) changes according to

1

2
→ (2 − 2x)2

8
,

where x parametrizes the critical line, and is actually related to the phase shift induced by the
core–hole in the equivalent x-ray edge problem. Since the end-point at J = J ′ is expected to be
a first-order one, we conclude that x moves from 0, J = 0, to 1, J = J ′, along the critical line.
The dimensions of all the other dimension-1/2 symmetry breaking operators changes instead
as

1

2
→ 1

2
+ (2x)2

8
,

so that they all become marginal at J = J ′. Notice that, since the twist operators are not
affected by the marginal perturbation, the S-matrices do not change along the line.

Concerning the other critical line, (S1, S2, S3, S4) = (0, 0, 0, 0)(1) in figure 14, we find
that, when J ′ = 0, the NRG spectrum is reproduced with a good approximation by fusing the
(−1,−1,−1,−1) BC with the primary field φ1/6 of the p′ = 6, c = 1 CFT. Once again,
since φ1/6 × φ1/6 = I + θ + φ2/3, the operator content includes, besides the relevant operator
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of dimension 2/3 that moves away from criticality, the marginal operator θ of the p′ = 6,
c = 1 CFT, which explains the continuous evolution of the NRG spectrum from J ′ = 0 to J .
The role of this marginal operator should be similar to its analogous on the other critical line.
Therefore, following the previous analysis and in accordance with [48], we expect the critical
line to be parametrized by a ‘phase shift’ x that modifies not only the spectrum but also the
operator content. In particular, the dimension of the operator φ2/3 that moves away from the
critical line changes according to

2

3
→ (4 − 2x)2

24
.

Since this operator eventually acquires vanishing dimension at J ′ → J , we conclude that
x → 2 at the end-point. The precise determination of x along the line is however difficult to
extract from our NRG spectra.

At x = 0, the most relevant symmetry breaking operator would correspond to the staggered
magnetization

J1 − J2 + J3 − J4, (27)

with dimension 1/3, which, at finite x , changes into

1

3
+ (2x)2

24
,

hence becomes marginal at J = J ′. This is physically sound, since at J = J ′ there is maximum
spin frustration. Besides the staggered magnetization, there are other less relevant symmetry
breaking operators of dimension 2/3 at x = 0. One of them is the singlet four-fermion operator

(J1 − J3) · (J1 − J2 + J3 − J4) + (1, 3) ↔ (2, 4),

whose dimension at x 	= 0 is 1/2 + (2 + 2x)2/24, thus becoming soon irrelevant.
The other symmetry breaking operators of dimension 2/3 correspond actually to all

possible mean field decoupling schemes of the exchange term

(J1 + J3) · (J2 + J4),

into inter-bath single-particle operators. Among them, we just mention the inter-bath hopping,∑

σ

(c†
1σ + c†

3σ )(c2σ + c4σ ) + H.c.,

as well as the d wave Cooper pairing,

(c†
1↑ − c†

3↑)(c†
2↓ − c†

4↓) − (↑ ↔ ↓).

They are all degenerate and, at x 	= 0, have dimension

5

8
+ (1 − 2x)2

24
.

At x = 2 they become marginal, but, interestingly enough, their dimension is non-monotonic
in x , although always greater than the staggered magnetization (27). Along this line, too, the
S-matrices and the residual entropy remain constant and equal to (S1, S2, S3, S4) = (0, 0, 0, 0)

and ln 2, respectively.
Like in the dimer and trimer examples, the relevance of the inter-bath hopping implies

that both critical lines are no more accessible if, instead of four impurities coupled by a spin
exchange, one considers four impurities coupled by a single-particle hopping, which is the
actual situation within cluster DMFT. Unfortunately, in this case we cannot obtain reliable
spectral functions by NRG because of numerical limitations. Therefore, we cannot verify
whether, in spite of the fact that the critical point is washed out, a sizable critical region still
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survives. However we tend to believe that it is the case, just like in the previous examples.
Finally, since both critical lines are stable towards the conventional particle–hole symmetry
breaking, the phase diagram for J 	= J ′, as function of U/� and of the average impurity
occupancy, still looks like the dimer one, see figure 5.

5. Discussion and conclusions

In this review, we attempted to uncover the key features that distinguish Anderson impurity
clusters from single-impurity models and that could play an important role within cluster
dynamical mean field theory as opposed to its original single-site formulation. All the examples
that we have studied, namely two-, three- and four-impurity clusters, share very similar
properties.

In particular, if the impurities within the cluster are coupled to one another by a two-body
spin exchange while each of them is hybridized with its own separate conduction bath, the phase
diagrams as function of the average impurity occupancy and of the Hubbard U are practically
the same, see figure 5. For U/� less than a critical value, perfect Kondo screening occurs
and the impurity cluster spectral functions show the conventional Kondo resonance. Above
that critical value, the inter-impurity exchange prevails instead and takes care of freezing out
the impurity degrees of freedom. Here, the impurity spectral functions develop a pseudo-gap
at the chemical potential, which is gradually filled in by ‘doping’, i.e., by moving the average
impurity occupancy away from half-filling. These two regimes are separated by a critical line
that is identified by several instability channels. In all cases, the instability channels correspond
to all possible mean field decoupling schemes of the spin exchange into bilinear operators. They
include the intra-bath magnetization, staggered according to the signs and relative strengths of
the spin exchange constants, and all singlet inter-bath bilinear operators, like the inter-bath
hoppings or singlet Cooper pairs. The trend from the dimer towards the tetramer is towards a
prevailing instability in the staggered magnetization channel. The dynamics across the critical
point are basically controlled by two separate energy scales. One of them, which we denoted
as T+, is finite across the transition and roughly of the order of the spin exchange. The other,
T−, is the scale generated by the deviation X from the critical line. It vanishes as T− ∼ |X |α ,
where, in the most interesting case of the tetramer, the exponent 1 � α � 3, is non-universal
and depends on the frustration. From the point of view of the impurity spectral functions,
see e.g. figure 6, T+ is the width of a broad incoherent peak within the Hubbard side-bands,
smooth across the critical point. On the contrary, T− is the width of the Kondo-like resonance
that develops on top of the broader one, in the Kondo screened phase. As the critical point
is approached, the Kondo resonance becomes narrower, and eventually disappears right at the
critical point, leaving behind only the incoherent peak. In the unscreened phase, T− controls
the width of the pseudo-gap that opens inside the incoherent part.

If the impurities inside a cluster are coupled one another by a single-particle hopping, t⊥,
instead of a spin exchange, the transition turns into a crossover from the Kondo resonance
behavior to the pseudo-gapped one. Indeed, the inter-impurity hopping plays a double role. On
the one hand it generates, for large U , a spin exchange, J = 4t2

⊥/U , that might drive the model
across the critical point. On the other hand, it also induces a small inter-bath hybridization,
V ∼ JK t⊥/U , that is a relevant perturbation and destabilizes the critical point. Specifically,
V cuts off all critical point singularities below an energy scale Ecut−off ∼ V β , where β � 3
in the tetramer and β = 2 in the dimer. Since V is small and β large, we expect that, in
spite of the critical point being no longer accessible, a ‘critical region’ should still survive if
Ecut−off � T+ ∼ J . We indeed found evidences in favor of this scenario both in the dimer as
well as in the trimer, where the impurity spectral functions are numerically accessible.
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Coming back to our original scope, let us imagine that we implement a cluster DMFT
simulation of a Hubbard model using a dimer, a trimer or a tetramer as representative clusters.
As U increases driving the model towards the Mott transition, the effective impurity cluster
must necessarily go through the above mentioned critical region (even if a true criticality is,
rigorously speaking, not accessible since the impurities as well as the baths are coupled by a
single-particle hopping). In this region, the instability channels of the avoided critical point
will be amplified and, after the DMFT self-consistency, can induce a true bulk instability in
the lattice model. At half-filling, our results on the impurity clusters suggest that most likely
magnetism appears, even in the presence of frustration. However, since instabilities in particle–
hole channels are weakened or removed by doping away from commensurate fillings, while that
weakening does not happen in particle–particle channels, a superconducting dome may emerge
near half-filling. Indeed, recent cluster DMFT simulations of the Hubbard model on a square
lattice [50, 51] found evidence of a d wave superconducting phase away from half-filling, in
close analogy with the phase diagram of high Tc superconductors.

Nevertheless, irrespectively of which symmetry broken phase actually occurs at low
temperatures, the physics of impurity clusters suggests that, in the normal phase above a critical
temperature, the transition to the Mott insulator is accompanied by the gradual opening of a
pseudo-gap in the single-particle spectral function. In this pseudo-gapped region, Fermi liquid
behavior, i.e. �(iω) ∼ iω, is recovered only at extremely low energies, suggesting the existence
of a finite temperature non-Fermi liquid behavior. Evidence in favor of this scenario has
been found in a recent cluster DMFT simulation of a paramagnetic two-dimensional Hubbard
model [52].

Another aspect worth emphasizing concerns the behavior of the Drude weight in the metal
away from half-filling across the symmetry breaking phase transition. From the point of view
of the effective impurity model, a symmetry breaking in the conduction baths opens up new
screening channels that can rid the impurity of its residual entropy at the critical point. This in
turns leads to an increase in screening energy gain that, translated back into the lattice model,
implies an increase in band energy gain, i.e. of the Drude weight. This behavior is actually
the fingerprint of this kind of instability that reflects the underlying impurity critical point, as
opposed to the conventional Stoner or BCS instability that are accompanied by a decrease of
Drude weight. The increase of Drude weight has been indeed observed in DMFT simulations
of the two-dimensional Hubbard model [50] as well as of a two-band Hubbard model [32] that
maps, within DMFT, onto the impurity dimer.
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Appendix. CFT at work

In this appendix, we show how conformal embedding works in a few simple examples. We do
it through the identification of the partition function, the so-called character decomposition.

The first step of bosonization in one dimension is the linearization of the free electron
spectrum around the Fermi momentum [35]. This linearization is not expected to affect the low
energy behavior provided the perturbations are weak compared to the bandwidth. Therefore let
us consider, instead of a tight binding model, free spinless Dirac fermions, which have indeed a
linear spectrum, on a chain of length L with anti-periodic boundary conditions. We are going to
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consider Dirac fermions moving only in one direction, namely with a single chirality, because
this is the case relevant to a semi-infinite chain where the single-particle wavefunctions with
negative momenta are not independent from those with positive ones.

The single-particle wavefunctions for a chiral Dirac fermion are plane waves with
momentum

k = π

L
(2n − 1),

n being integer. The Hamiltonian in momentum space reads

H = vF

∑

k

k c†
k ck, (A.1)

where vF has to be identified with the Fermi velocity of the original tight binding model. Let
us define, for positive k,

αk = ck,

βk = c†
−k,

so that, apart from an (actually infinite) constant, the Hamiltonian becomes

H = vF

∑

k>0

k
(
α

†
k αk + β

†
k βk

)
. (A.2)

The partition function at temperature T is simply

ZDirac =
∏

k>0

[
1 + exp (−β vF k)

]2 =
∏

n�1

(
1 + qn−1/2

)2
, (A.3)

where conventionally [30] q is defined as

q = exp

(
−β

2πvF

L

)
≡ e2π iτ .

One can show that

ZDirac(q) = θ3(q)

ϕ(q)
, (A.4)

where θ3 is the third Jacobi theta function

θ3(q) =
∞∑

n=−∞
qn2/2,

and ϕ the Euler function

ϕ(q) =
∏

n�1

(
1 − qn

)
.

On the other hand, it is known by bosonization [35] that, for positive p = 2πn/L > 0, the
operators

bp = −i

√
2π

pL
ρ(p) = −i

√
2π

pL

∑

k

c†
k ck+p, b†

p = i

√
2π

pL
ρ(−p),

satisfy bosonic commutation relations. In addition their equation of motion can be reproduced
by the Hamiltonian

H = πvF

L

∑

p

ρ(p) ρ(−p) = vF

∑

p>0

p b†
p bp + πvF

L
� N2, (A.5)
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where it is assumed that ρ(p = 0) is the variation � N of the electron number with respect to
a reference value. The partition function of this bosonic model is the product of the free boson
term

∏

p>0

[
1 − exp (−β vF p)

]−1 =
∏

n>0

(
1 − qn

)−1 = ϕ(q)−1

plus the contribution of � N which is, assuming an infinite reference number,
∞∑

n=−∞
exp

(
−β

vFπ

L
n2

)
=

∞∑

n=−∞
qn2/2 = θ3(q).

One immediately recognizes that the bosonic partition function coincides with the fermionic
one.

We can proceed further on, and consider spinful Dirac fermions. Obviously, the partition
function is the square of ZDirac in equation (A.4). As the simplest example of conformal
embedding and character decomposition, we consider a perturbation that only preserves
independently the spin SU(2) symmetry and the charge isospin SU(2), defined through the
generators I, which are the q = 0 components of the so-called isospin current operators

Iz(q) = 1
2

∑

kσ

(
c†

kσ ck+qσ − δq0

)
,

I +(q) =
∑

k

c†
k↑ c†

−k−q↓,

I −(q) = (
I +)†

.

The spin SU(2) current operators are instead

S(q) = 1
2

∑

kαβ

c†
kα σ αβ ck+qβ , (A.6)

where σ are the Pauli matrices. In real space these current operators, Ja = Ia, Sa , satisfy the
commutation relations

[
Ja(x), Jb(y)

] = iεabc δ(x − y) Jc(x) − i k
1

4π
δab

∂δ(x − y)

∂x
,

with k = 1. For generic k � 1, the above commutation relations identify an SU(2)k CFT [30],
where the label k may be regarded as the number of channels which are used to build up
the generators. An SU(2)k CFT has primary fields φ

(k)
2 j with spin quantum numbers j , such

that 2 j = 0, 1, . . . , k. Their dimensions are x j = j ( j + 1)/(k + 2). The product of two
primary fields with spin j and j ′ yields all primary fields with spin between | j − j ′| and
min(k − j − j ′, j + j ′). The Hilbert space of the theory is obtained by applying the primary
fields on the reference vacuum state and, from this ancestor state, by generating all descendant
states applying the current operators with q < 0. This is what is called a conformal tower [30].
The energy difference between the descendant states and their ancestor is an integer multiple
of the fundamental level spacing � = 2πvF/L. The character χ

(k)

2 j represents the contribution

to the partition function of the conformal tower generated by the primary field φ
(k)
2 j [30].

This construction may look abstruse but actually has a simple physical interpretation. Let
us consider again a single spinful fermion, k = 1. Let us further assume that on average the
number of electrons is equal to the number of sites, and the latter is even. In this case the
ground state is obtained by filling with two electrons of opposite spin all single-particle levels
below the chemical potential, which lies in the middle of two consecutive single-particle levels
separated by the fundamental spacing �, from now on our energy unit. With this definition,
the Hilbert space can be constructed as follows. One can start from the vacuum and act on it
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Table A.1. The spectrum of spinful electrons when the ground state contains an even number of
particles.

I S x

0 0 0
1/2 1/2 1/2

with particle–hole excitations, namely with Iz(q) or S(q) with q < 0. In addition, one can
apply the operators I +(q) or I −(q), again with q < 0, to change by an even multiple the
number of electrons, and then consider all particle–hole excitations on top of these states. In
this way, one obtains all states which have even number of electrons, like the vacuum state.
This is nothing but the conformal towers obtained by the ancestor fields φ

(1)
0 in both the charge

and spin SU(2)1 sectors, which should therefore contribute to the partition function with the
product of characters (χ

(1)

0 )charge(χ
(1)

0 )spin.
The rest of the Hilbert space includes all states with odd number of electrons. Since a

single electron carries isospin and spin 1/2, all these states have half-odd integer values of
Iz and Sz . One realizes that they can all be obtained by applying the product of the isospin
and spin primary fields φ

(1)
1 charge × φ

(1)
1 spin, which is nothing but the single-electron operator, and

construct out of it all descendant states. Their contribution to the partition function should then
be (χ

(1)
1 )charge (χ

(1)
1 )spin. The expression of the SU(2)k characters [30, p 586] is

χ
(k)
l (q) = 1

η(q)3

∞∑

n=−∞
[2n (k + 2) + l + 1] q(2n(k+2)+l+1)2/4(k+2),

where

η(q) = q1/24 ϕ(q),

is the Dedekind function. In the specific case of k = 1,

χ
(1)
0 (q) =

√
θ3(q)2 + θ4(q)2

2η(q)2
,

χ
(1)
1 (q) =

√
θ3(q)2 − θ4(q)2

2η(q)2
,

where

θ4(q) =
∞∑

n=−∞
(−1)n qn2/2,

is the fourth Jacobi theta function. Hence we find that
(
χ

(1)

0

)

charge

(
χ

(1)

0

)

spin
+

(
χ

(1)

1

)

charge

(
χ

(1)

1

)

spin
= θ3(q)2

η(q)2
= q−1/12 ZDirac(q)2, (A.7)

which, apart from the vacuum polarization contribution q−1/12, is exactly the partition function
of two species of Dirac fermions. The spectrum, and correspondingly the partition function, can
be represented as in table A.1. In that and all forthcoming tables, we identify each conformal
tower by the quantum numbers of the primary fields which generate the ancestor states. x is the
energy in units of � of the ancestor state with respect to the chemical potential. The descendant
levels of an ancestor have energies x + n, with n a positive integer. Notice that an important
consequence of conformal invariance is that the energy of each state in units of � coincide with
the dimension of the operator which, applied to the vacuum, yields that state.
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Table A.2. The spectrum of spinful electrons when the ground state contains an odd number of
particles.

I S x − 1/4

1/2 0 0
0 1/2 0

Following the same reasoning, one can easily show that the table of the energy spectrum
in the case of odd chains at half-filling (i.e. odd average number of electrons) is the one of
table A.2. The ground state is fourfold degenerate, the chemical potential coinciding with a
single-particle level. One can readily realize that the even and odd chain spectra can be turned
one into the other by fusion with a charge or a spin primary field φ

(1)

1 . This is the physics of
the single-channel spin-1/2 Kondo impurity model. Indeed, when Kondo effect is established,
the impurity site becomes effectively a new site of the chain, thus changing the parity of the
number of sites, i.e. the boundary conditions.

The two-channel model. Let us consider a more involved conformal embedding in the
case of two channels of spinful fermions. The partition function is the square of the partition
function (A.7) of a single channel, and can be written for even chains as

Z =
∑

n1,n2=0,1

(
χ(1)

n1
χ(1)

n2

)
charge

(
χ(1)

n1
χ(1)

n2

)
spin

, (A.8)

where n1 refers to channel 1 and n2 to channel 2. For odd chains, one readily finds that

Z =
∑

n1,n2=0,1

(
χ(1)

n1
χ(1)

n2

)
charge

(χ
(1)

1−n1
χ

(1)

1−n2
)spin. (A.9)

These expressions manifestly show that the two-channel free conduction electrons are invariant
under independent spin or isospin SU(2) transformations within each channel, namely under a
large symmetry SU(2) × SU(2) × SU(2) × SU(2).

Let us suppose that the impurity couples only to the spin current operators in such a way
that only the overall SU(2) spin symmetry is preserved. Therefore, while the charge degrees of
freedom can still be represented by two SU(2)1 CFT’s, the appropriate conformal embedding
for the spin sectors should involve an SU(2)2 CFT, since the total spin current is made up of
two channels, times the coset CFT, namely

SU(2)1 × SU(2)1 → SU(2)2 × SU(2)1 × SU(2)1

SU(2)2
.

Since the central charge is conserved and each SU(2)k has a central charge 3k/(k + 2), the
coset theory should have c = 1/2, which corresponds to the central charge of an Ising CFT.
This can be proved rigorously by the character decomposition.

The Ising CFT has three primary fields, the identity I , with dimension 0, the energy field
ε, with dimension 1/2, and the spin field σ with dimension 1/16. The fusion rules are [30]

I × I = I, ε × ε = I, σ × σ = I + ε, I × ε = ε,

I × σ = σ, ε × σ = σ. (A.10)

The characters χ I
x , where x is the dimension of the primary field, are given by (all functions

are assumed to depend on the variable q , even when not indicated)

χ I
0 = 1

2

[√
θ3

η
+

√
θ4

η

]
,
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Table A.3. The spectra of two channels on even chains, left table, and odd chains, right table. I1

and I2 are the isospin value of each channel, S the value of the total spin and Ising refers to the Ising
primary fields.

I1 I2 S Ising x I1 I2 S Ising x − 1/2

0 0 0 0 0 0 0 0 1/2 0
0 0 1 1/2 1 0 0 1 0 0
1/2 0 1/2 1/16 1/2 1/2 0 1/2 1/16 0
0 1/2 1/2 1/16 1/2 0 1/2 1/2 1/16 0
1/2 1/2 0 1/2 1 1/2 1/2 0 0 0
1/2 1/2 1 0 1 1/2 1/2 1 1/2 1

Table A.4. Left table: the spectrum of the unstable fixed point of the two spin-1/2 Kondo impurity
model. Right table: the boundary operator dimensions at the unstable fixed point. The single
and double asterisks identify, respectively, the symmetry invariant and symmetry breaking relevant
physical operators.

I1 I2 S Ising x − 1/16 I1 I2 S Ising x

0 0 0 1/16 0 0 0 0 0 0
1/2 0 1/2 0 3/8 0 0 0 1/2 1/2(∗)

0 1/2 1/2 0 3/8 1/2 0 1/2 1/16 1/2
0 0 1 1/16 1/2 0 1/2 1/2 1/16 1/2
1/2 1/2 0 1/16 1/2 0 0 1 0 1/2(∗∗)

1/2 0 1/2 1/2 7/8 1/2 1/2 0 0 1/2(∗∗)

0 1/2 1/2 1/2 7/8 0 0 1 1/2 1
1/2 1/2 1 1/16 1 1/2 1/2 0 1/2 1

1/2 1/2 1 0 1
1/2 1/2 1 1/2 3/2

χ I
1/2 = 1

2

[√
θ3

η
−

√
θ4

η

]
,

χ I
1/16 =

√
1

2

√
θ2

η
,

where the second Jacobi function is defined by

θ2 =
∞∑

n=−∞
q(n−1/2)2/2.

One can show that the product of characters of two SU(2)1 CFTs, χ
(1)
2 j χ

(1)
2 j ′ , can be related

to the product of characters of an SU(2)2 and an Ising CFTs, χ
(2)

2l χ I
x , by

χ
(1)
0 χ

(1)
0 = χ

(2)
0 χ I

0 + χ
(2)
2 χ I

1/2,

χ
(1)
0 χ

(1)
1 = χ

(1)
1 χ

(1)
0 = χ

(2)
1 χ I

1/16,

χ
(1)

1 χ
(1)

1 = χ
(2)

0 χ I
1/2 + χ

(2)

2 χ I
0 .

By means of the above decomposition one can write the tables of the spectra for even and odd
chains, as given in table A.3. By these tables one easily realizes that the spectrum of even
chains can be turned into that of odd chains, and vice versa, either by fusion with the SU(2)2

primary field of spin 1, or by fusion with the Ising field ε. As we mention in section 2, the
unstable fixed point of the two spin-1/2 Kondo impurity model was found by Affleck and
Ludwig [11, 12] to correspond to fusion with the Ising field σ . If one performs such a fusion in
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the spectra of table A.3, one obtains, by means of the fusion rules (A.10), a new spectrum that
was shown to reproduce the NRG spectrum obtained by Jones and Varma [10]. By performing
a further fusion (so-called double fusion [39, 40]) with σ , one determines the dimensions of
the boundary operators at the unstable fixed point, shown in the same table A.4. Their physical
meaning is discussed in section 2.
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